Prediction and Detection of Epileptic Seizure
نویسندگان
چکیده
Epilepsy is one of the common neurological disorders characterized by a sudden and recurrent malfunction of the brain that is termed “seizure”, affecting around 65 million individuals worldwide. Epileptic seizure may lead to many injuries such as fractures, submersion, burns, motor vehicle accidents and even death. It is highly possible to prevent these unwanted situations if we can predict/detect electrical changes in brain that occur prior to onset of actual seizure. When building a prediction model, the goal should be to make a model that accurately classifies preictal period (prior to a seizure onset) from interictal (period between seizures when non-seizure syndrome is observed) period. On the hand, for the detection we need to make a model that can classify ictal (actual seizure period) from non-ictal/interictal period. This chapter describes the seizure detection and prediction techniques with its background, features, recent developments, and future trends.
منابع مشابه
Epileptic seizure detection based on The Limited Penetrable visibility graph algorithm and graph properties
Introduction: Epileptic seizure detection is a key step for both researchers and epilepsy specialists for epilepsy assessment due to the non-stationariness and chaos in the electroencephalogram (EEG) signals. Current research is directed toward the development of an efficient method for epilepsy or seizure detection based the limited penetrable visibility graph (LPVG) algorith...
متن کاملEpileptic Seizure Detection in EEG signals Using TQWT and SVM-GOA Classifier
Background: Epilepsy is a Brain disorder disease that affects people's quality of life. If it is diagnosed at an early stage, it will not be spread. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. However, this screening system cannot diagnose epileptic seizure states precisely. Nevertheless, with the help of computer-aided diagnosis systems (CADS), neurologists ca...
متن کاملOptimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier
Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...
متن کاملSeizure prediction and control in epilepsy
pg 1 LIST OF ABBREVIATIONS IN ALPHABETIC ORDER pg 2 INTRODUCTION 1. Historical background. pg 3 1.1 Epileptic seizures. pg 4 2. Epilepsy and electroencephalography. pg 7 2.1 Spatial-temporal dynamics in epilepsy. pg 8 • PREDICTION 3. Detection and prediction of seizures on scalp-EEG data. pg 9 3.1 Linear and non linear measures to predicting of seizures. pg 10 • CONTROL 4. Seizures control. pg ...
متن کاملPrediction of Epileptic Seizure by Analysing Time Series EEG Signal Using k-NN Classifier
Electroencephalographic signal is a representative signal that contains information about brain activity, which is used for the detection of epilepsy since epileptic seizures are caused by a disturbance in the electrophysiological activity of the brain. The prediction of epileptic seizure usually requires a detailed and experienced analysis of EEG. In this paper, we have introduced a statistica...
متن کاملOnline analysis of local field potentials for seizure detection in freely moving rats
Objective(s): Seizure detection during online recording of electrophysiological parameters is very important in epileptic patients. In the present study, online analysis of field potential recordings was used for detecting spontaneous seizures in epileptic animals.Materials and Methods: Epilepsy was induced in rats by pilocarpine injecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015